
 

How inefficient are small-scale rice farmers in eastern India really? 

Examining the effects of microtopography on technical efficiency estimates 

 

Nobuhiko Fuwa※, Christopher Edmonds, and Pabitra Banik
* 
 

June 2005 

 

Selected Paper prepared for presentation at the American Agricultural Economics 

Association Annual Meeting, Providence, Rhode Island, July 24-27, 2005 

 

Abstract 

We focus on the impact of failing to control for differences in land types defined along 

toposequence on estimates of farm technical efficiency for small-scale rice farms in 

eastern India.  In contrast with the existing literature, we find that those farms may be 

considerably more technically efficient than they appear from more aggregated analysis 

without such control. Farms planted with modern rice varieties are technically efficient. 

Furthermore, farms planted with traditional rice varieties operate close to the production 

frontier on less productive lands (upland and mid-upland), but significant technical 

inefficiency exists on more productive lands (medium land and lowland).   
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How inefficient are small-scale rice farmers in eastern India really? 

Examining the effects of microtopography on technical efficiency estimates 

Nobuhiko Fuwa, Christopher Edmonds, and Pabitra Banik 

 

Introduction  

The diffusion and adoption of green revolution technologies for wheat and rice has been 

slow in two extensive agricultural regions in India: the dry semi-arid tropics and the 

eastern India’s rice-growing region (Walker and Ryan).  While the understanding of the 

causes of slow adoption in the former area is relatively well understood due in large part 

to the International Crop Research Institute for Semi-Arid Tropics’s (ICRISAT) intensive 

village-level studies, relatively less research has been carried out on the latter area.  This 

article focuses on the selected areas of the Chhotanagpur Plateau in eastern India, an area 

characterized by its high poverty incidence and large share of ‘tribal’ households, low 

productivity in the regions largely rain-fed based agriculture, and an environmentally 

degraded landscape characterized by undulating topography.   

The main policy question underlying this article is: what should investment 

priorities be for efforts to improve the agricultural productivity—and through this the 

living standards of impoverished households in eastern India that derive a significant 

share of their income from small farms?  We address this question by estimating the 

degree of technical efficiency of these farms.  A finding that there is substantial technical 

inefficiency would suggest directing public investments toward measures for improving 

technical efficiency (typically through farmer education, agricultural extension, land 

tenure reforms, infrastructure development, etc) would be expected to yield high short-
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term payoffs.  On the other hand, if these small farm households are found to be ‘poor but 

(technically) efficient,’ à la T. W. Schultz, then public investments should be directed to 

research and development for new technologies.  This question is currently of particular 

policy importance as India’s policymakers redouble rural development efforts in the 

country following the 2004 national elections.  A number of analysts have argued the 

strong support of the rural poor—frustrated by the slow pace of improvements in living 

standards despite stronger growth in the overall Indian economy—contributed to the 

unexpected victory of the coalition led by the Congress party. 

 In order to address this question, we follow the conventional approach of 

measuring small farm efficiency by estimating stochastic frontier production functions.  

In our application of this technique, we focus on the methodological issue of possible 

effects on estimation results, and through these the policy conclusions, of controlling for 

the effect of environmental conditions on farm efficiency.  A large literature estimating 

technical efficiency in farm production in India and elsewhere has generally found 

significant technical inefficiency among farmers (e. g., Audibert, Kalirajan 1981, 1982, 

also see Battese 1992, for a survey).
1
  However, Sherlund, Barret and Adesina have 

recently shown that failure to control for the effect of differences in the environmental 

characteristics of farm (e.g., climate, soil type and quality, and pests infestation) can lead 

to significant overestimation of the degree of technical inefficiency.
2
  Sharing a similar 

methodological concern for the effect of subtle differences in such characteristics—

                                                 
1
 Bagi (1982) and Battese and Coelli (1992), on the other hand, represent a minority of studies finding 

relatively high technical efficiency of farmers in India.   
2 
 Coelli, Perelman and Romano apply a more general approach, but report similar results, in their analysis 

of the international airline industry. 
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driven by concern about the particular natural environment of our study area in eastern 

India—we examine estimates of technical inefficiency with and without disaggregation in 

terms of farm plot location on the microtopography that typifies the land situation in the 

study area.  Lack of proper control for various dimensions of farm heterogeneity has the 

potential to alter findings regarding farm inefficiency, and through this, policy 

conclusions regarding the appropriate focus in rural development efforts in rural eastern 

India.   

 The article’s analysis of farm production and productive efficiency proceeds at 

several levels of aggregation.  Starting with the household-aggregate level analysis and 

moving to plot-level analysis enables more detailed data regarding the environmental 

conditions to be accounted for in the estimates.  Environmental variables treated include 

the availability of irrigation water and land location on a low scale toposequence.  We 

examine how disaggregation and consideration of additional control influence estimation 

results and inferences about the extent of technical efficiency among small farmers in our 

survey sample.  As expected, results suggest that ignoring differences in the 

topographical position of farm plots holds serious consequences for technical efficiency 

estimates.   

 The rest of the article is organized as follows. Section 2 briefly discusses some of 

the major characteristics of the poor rice farmers in our survey in eastern India. Section 3 

outlines our empirical strategy for conducting sensitivity analysis and introduces our 

empirical model.  Section 4 presents estimation results.  Section 5 considers possible 

policy implications of findings and concludes the article with some final observations.  
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Characteristics of the study area and data set
3
 

Following the policy reforms of the early 1990s, the Indian economy has displayed 

renewed dynamic in terms of its growth and achievements in poverty reduction.  

However, recent research has shown that not all regions of the country have benefited 

from this improved economic performance and large variation exists within India in 

terms of the rate of income growth and extent of poverty reduction successes (e. g., Datt 

and Ravallion).  This follows an earlier post-War history in the country in which green 

revolution technologies for wheat and rice cultivation enabled marked increases in 

agricultural productivity and aggregated food production in most agricultural regions of 

the country in the 1970s and 1980s, but bypassed—at least initially—two of the country’s 

extensive agricultural regions: the semi-arid tropics and eastern India’s rainfed rice-

growing region (Walker and Ryan).  Thanks to the intensive village level studies and 

longitudinal household surveys carried out by the International Crop Research Institute 

for Semi Arid Tropics, our knowledge of the former area is substantial and rich.  In 

contrast, the eastern rainfed rice region has been the subject of relatively little 

quantitative analysis and much less is known about the agricultural practices and farm 

efficiency in this region.  

 Our study area lies on the Chhotanagpur Plateau, and is part of the so-called 

“tribal belt” in eastern India.  The data analyzed in this study was collected jointly by 

International Rice Research Institute (IRRI) and Indian Statistical Institute (ISI) in 1998 

and 1999.  The survey sample covered two neighboring districts in the states of 

                                                 
3
 This section draws heavily on Banik et al.  
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Jharkhand (a part of Bihar state prior to 2000) and West Bengal.  A total of 541 

households were selected for interviewing based on a stratified random sample of 

households in 8 villages in Giridih district (Jharkand) and 8 villages in Purulia district 

(West Bengal).  In each village, 35 households were randomly selected from Census lists 

across 5 landholding groups including landless households.   The survey questionnaire 

captured a host of economic and agricultural characteristics of the households and their 

farms, but was particularly focused on capturing information on agricultural production 

activities at the plot level.  Our empirical analysis utilizes rice production data from 1089 

plot-level observations (operated by 469 farm households) during the Kharif season (i.e., 

the monsoon season spanning roughly between June and November/December).  Table 2 

presents sample averages and variances for the key variables used in the production 

estimates. 

 The incidence of poverty among rural households in the area has been estimated 

to be among the highest in India and perhaps in all of Asia.  Statewide headcount poverty 

ratios in Bihar (which included Giridih District prior to 2000) and West Bengal (where 

Purulia district lies) were the second and third highest in 1987-88 and second and fifth 

highest in 1999 (Deaton).  Based on the Planning Commission’s official poverty line for 

1999, 60% of sampled households were poor.  Indicators of social development and basic 

need satisfaction also suggest that the study area is poor.  For example, the average years 

of schooling of the household heads was only 3.6 years.   
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 Agriculture in the area is largely rice-based and features a very strong subsistence 

orientation.4  The average size of the farm operated by our sample households was 2.2 

acres.  The majority of our sample farms relied on traditional cultivation technique in 

their rice production in the late 1990s. The rate of adoption of modern rice varieties 

(MVs) remained relatively low (see below), and the use of agricultural machinery, such 

as tractors and power tillers, was almost nonexistent among the sample farmers.   

 One significant feature of the agricultural production environment in the study 

area is the combination of the area’s undulating topography and highly dissected 

landscape.  These characteristics give rise to low scale variations in terrain and soil and 

water conditions that influence the kinds of crops that can be grown, the time windows 

for cropping, and feasible cropping systems across land lying at different levels of the 

toposequence.  Local farmers typically distinguish four different levels according to their 

perception of the soil moisture gradient along the toposequence: upland, mid-upland, 

medium land and lowland.  Going from the upland plots to the lowland plots, agricultural 

experts from the ISI have observed a generally consistent trend of increasing soil fertility.  

Table 1 summarizes the results of sample soil chemical analysis conducted in one of our 

sample villages showing the systematic pattern of increasing chemical nutrients contained 

in the soil along typosequence.5  One of the most striking characteristics of these land 

types is that the relatively minor differences in elevation define different land types.  The 

difference in elevation between adjacent plots along the toposequence is typically small 

(3 to 5 meters), meaning very minor differences in elevation are associated with 

                                                 
4
 For example, only 21% of the sample households reported selling of rice during the survey year.   

5
 At the same time, however, lowlands sometimes suffer from excessive water.  
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significant changes in plot characteristics (e.g., moisture and nutrient holding capacity, 

vulnerability to erosion).   

 Farmers have adapted to these microtopographies by adjusting cropping patterns 

(i.e., particular rice varieties cultivated) and crop management practices.  Upland plots 

are typically planted with short duration (85-90 days), draught-tolerant, and low-yielding 

traditional/rustic rice varieties or traditional minor millets.  Mid-upland plots are typically 

planted with medium-duration rice varieties. On medium land, where soil moisture is 

available for a longer period than on the higher terraces, long-duration traditional rice 

varieties were most widely planted.  At the bottom of toposequence—on lowland plots—

farms typically planted traditional long-duration varieties with low inputs of manure. 

While planting of traditional varieties predominated according to survey responses, MV 

rice is cultivated mainly on medium land and lowland plots, although the rate of adoption 

remains relatively low.  The share of land areas planted with modern varieties ranged 

from 6 % on upland to 21% on lowland and 24% on medium land.   

 Corresponding to the importance of plot position on the terrace, average paddy 

yields observed among our sample plots increased as one moves down the toposequence 

from upland to lowland.  On uplands, rice yields averaged 2.1 tons per hectare as 

compared to an average yield of 3.3 tons per hectare on lowland.  Refer to Table 2 for 

complete descriptive statistics regarding rice cultivation on surveyed farms and on plots 

of the different land types.  Both summary statistics and the stylized facts observed from 

detailed fieldwork in the study suggest that disaggregation across plots along 
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toposequence, and controlling differences in other environmental conditions, can exert 

large influence on estimates of farm technical efficiency.   

Methodology for testing sensitivity of technical efficiency estimates  

We examine technical efficiency of small farmers in eastern India by estimating 

stochastic frontier production functions (SFPFs), as pioneered by Aigner, Lovell and 

Shmidt and Meeusen and van den Broeck.  In particular, the analysis seeks to evaluate 

how including details about the microtopographic position and other environmental 

characteristics of farm plots affects inferences that can be made regarding small farmer 

technical efficiency.  To do this, we estimate SFPFs at different levels of land 

aggregation and including different controls variables and compare estimation results.  

SFPFs estimation models take the general form:  

 lnYi =  f(Xi, Zi; β) + Vi – Ui ,       (1) 

where f(.) defines the production frontier with i representing i
th
 observation (either plot-

level or farm level, as detailed below).  Yi is the total amount (in kilograms) of paddy 

produced, Xi is a vector of production inputs (land, seed, labor, and fertilizer), Zi is a 

vector of additional environmental variables (e.g., irrigation, village dummies), and β is 

the vector of unknown estimation parameters that characterize the production frontier.  

Because most environmental characteristics are homogeneous across farms in a single 

village, Zi are measured at the village, and capture access to infrastructure and other 

institutional variations as well as environmental characteristics. Vi represents random 

error (e. g., measurement error) and is assumed to be normally distributed with mean zero 

and variance σv
2
, while Ui (>0) captures the non-negative component of the estimation 
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residual and is interpreted as representing technical inefficiency.  By partitioning the 

error term into a normally distributed component and an asymmetric component, SPFP 

estimation attributes the first component to model measurement error and the latter to 

systematic differences across observations that relate to differences in the productive 

efficiency of sample farms and farm plots.   

 It is standard practice in SFPF estimation for the production frontier f(.) to be 

parameterized as a Translog or Cobb-Douglas functional form.  The Translog 

specification is more attractive because of its greater flexibility and fewer a priori 

restrictions (e.g., assumptions regarding the substitution elasticity across inputs), but its 

application comes at the cost of reduced degrees of freedom and greater likelihood of 

encountering problems of collinearity among regressors.  In this article, we initially 

estimate (1) as a Translog production frontier taking the form:  

 lnYi = β0 + ∑
=
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1

lnβ + ½∑∑
= =
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1

β  + Vi – Ui , (2) 

with βjk =βkj (k = 0, 1, …, K).  We then test whether Cobb-Douglas is an adequate 

specification by testing the joint significance of H0: βjk=0 for all j, k = 1, …, K.  When the 

null hypothesis is not rejected, we re-estimate the production frontier using a Cobb-

Douglas specification.
6
  If the null hypothesis is rejected, we retain the Translog 

specification.   

 A variety of distributions (e.g., exponential, half-normal, two-parameter gamma, 

or truncated normal) are used to characterize the technical inefficiency term Ui in the 

                                                 
6
 The equation estimated in this case takes the form: lnYi = β0 + ∑

=

K

k

kik X
1
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1

β  + Vi – Ui  . 
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existing literature applying the SPFP approach.
7
 While distributions that involve two-

parameters (e.g., two parameter gamma, truncated normal) can accommodate a wider 

range of possible distributional shapes, their application appears to come at a potential 

cost of increased difficulty in the identification of parameters (see Ritter and Simar).  In 

addition, the empirical significance of applying different distributional assumptions for Ui 

has not been clearly established in the existing literature.  For example, earlier research 

has shown that while the quantitative magnitudes of predicted firm-level technical 

efficiency are sensitive to such distributional assumptions, the ranking among 

observations based estimated technical efficiency is not (Kumbhakar and Lovell).  Given 

the state of our knowledge, we initially experimented with alternative distributional 

assumptions of exponential, half-normal and truncated normal, but found that model 

identification was indeed difficult when the truncated normal distribution was used.  The 

estimated mean of Ui had relatively large standard errors and was not significantly 

different from zero.  Furthermore, we find that qualitative results of estimates are largely 

invariant with respect to the distributional assumption for Ui, as will be discussed in the 

next section.  Consequently, in our estimates we apply the assumption that Ui is 

distributed as a half-normal distribution (a relatively simpler distribution and that has 

been widely used) with variance σu
2
.
8
  This treatment follows the suggestion of Ritter and 

Simar (p. 181), and Kumbhakar and Lovell (p. 90) 

                                                 
7
 See Kumbhkar, Lovell 2000 for a more comprehensive discussion of alternative distributional 

assumptions found in the literature.   
8
 Empirical results calculated applying other distributional assumptions are available from the authors upon 

request.   
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 We test for the presence of statistically significant technical inefficiency among 

survey farmers by examining the null hypothesis H0: σu
2=0 against the alternative 

hypothesis H1: σu
2
>0.  As shown by Coelli (1995), a one-sided generalized likelihood test 

statistic is asymptotically distributed as a mixture of chi-square distributions with one 

degree of freedom (see also Kumbhakar and Lovell and Coelli, Rao and Battese).  We 

predict technical efficiency scores for individual plots as TEi = exp(-Ui), conditional on 

the observed composite error (Vi - Ui), which follows the approach developed by Jondrow 

et al. and Battese and Coelli (1988).  

 The principal methodological question we seek to address in this article is: what is 

the effect of including (or failing to include) detail concerning the microtopography of 

farm plots on the estimation of plot-level technical efficiency.  Starting from the farm-

wide level of analysis and moving to plot-level analysis, and adding more variables in the 

estimates to account for other environmental conditions explicitly, we examine how the 

disaggregation and additional controls influence inferences about the extent of technical 

efficiency of small farmers.  More specifically, we estimate production frontiers at 3 

levels of aggregation:  

1. Farm (household) level where the output and inputs of all the plots are 

aggregated, 

2. Plot level analysis where plots of different land types (topographical positions) 

are pooled together, and  

3. Plot level analysis for each of the four land types across the toposequence. 
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 In addition, at each level of the analysis we estimate two alternative specifications.  

One specification defines production as depending upon only the level of production 

inputs (i.e., land area, labor, fertilizer and seed).  The second specification adds additional 

control variables to capture the effect of irrigation availability (a dummy variable taking 

the value one if the plot is irrigated and zero otherwise) and village-level dummies on 

farm/plot output.  In addition, in the plot level analyses (i. e., pooled plot level as well as 

separate analyses by land type
9
) separate estimates are carried out for plots in which 

modern and traditional rice varieties were cultivated.  

Estimation results 

In all but one case, the estimated quadratic terms of the Translog production functions are 

statistically significant, so the Translog speciation is retained for those cases.  In the case 

of separate estimation of ‘medium-land,’ the quadratic terms were jointly not 

significantly different from zero, so we used Cobb-Douglas form for those estimates.  All 

the models were statistically significant (with a 95 percent or higher probability) 

according to the Wald chi-square tests. 

Estimated Production Frontier Parameters  

Tables 3 and 4 summarize the mean and standard deviation of the estimated (plot-

specific) input elasticity of output based on our estimated production frontier under the 

various specifications detailed on the table.  In general, estimation results suggest land is 

the most important productive input in terms of input elasticity, followed by seed.  The 

relatively small (and occasionally negative) elasticity of labor is somewhat puzzling, but 

                                                 
9
 Plot-specific estimates disaggregated by land type could not be carried out for plots planted with modern 

varieties because the number of observations was inadequate for such analyses.   
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is consistent with previous findings from rice farmers in Bangladesh (Sharif and Dar) and 

wheat farmers in Pakistan (Battese and Broca).  A plausible explanation for the negative 

coefficients estimated for labor input in some of the specifications relates to the fact that 

labor input is pre-determined to a much lesser extent than other inputs (i.e., decisions 

regarding the size of plot to cultivate and the amount of seed to apply much be made at 

the start of the planting season) and increased application of labor is a common response 

to crop management problems (e.g., drought, or weed/insect infestations).  

 We find that the estimated input elasticities tend to vary significantly across 

different land types.  Elasticities also varied—although on a less consistent basis—

depending upon inclusion of additional control variables (i.e., irrigation availability and 

village dummies) in the estimation.  The mean elasticity of output with respect to land 

input, for example, ranges widely between 0.3 on uplands (based on the model without 

irrigation or village controls) and 0.86 on medium land (based on the model without 

irrigation or village controls).  This suggests that the estimated technology parameters 

that characterize production frontiers are sensitive to the position of the land in the local 

microtopography.  This is not surprising, however, given the fact that the farms plants 

different rice varieties and apply inputs at different levels and timings across different 

land types. These findings are in line with Sherlund, Barrett and Adesina’s general 

conclusions.  Having established the overall validity of the SFPF estimates, we next turn 

our attention to the principal point of interest in carrying out the estimates—the models’ 

estimates of farm technical efficiency.   
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Technical efficiency estimates 

We generally find that the estimates of technical efficiency are significantly influenced 

by disaggregation of farm production across land types and plots.  Test results of 

statistical significance for technical efficiency with various specifications are summarized 

in Table 5, while the predicted technical efficiency scores are summarized in Table 6.  As 

is typically found in the literature on the farm level estimation of SFPF, our estimation 

results indicate that there is significant technical inefficiency among the rice farms in our 

survey.  As shown in the first column of Table 5, the null hypothesis that there is no 

technical inefficiency (i.e., σu equals zero) is strongly rejected (probability value of less 

than 0.01).  Average technical efficiency scores estimated for our sample of farms are 

between 0.75 (the production frontier specification with production inputs only) and 0.8 

(the specification with additional irrigation and village heterogeneity controls).  

Individual technical efficiency estimates range between 0.4 and 0.95, based on the model 

including additional irrigation and village heterogeneity controls.  The first column of 

Table 6 reports these results.  The magnitude of these estimated technical efficiency 

scores is roughly comparable to those found in the literature on farms in developing 

country settings (Battese 1992).
10
  However, the analysis at the aggregate farm 

(household) level analysis does not indicate strong influence of irrigation availability and 

village-level heterogeneity controls on estimates of technical efficiency, which contrast 

sharply with the earlier findings of Sherlund, Barrett and Adesina.  

                                                 
10
 We should be cautious in interpreting these results, however, in that the comparison of efficiency scores 

says nothing about the relative efficiency across samples of farmers, as emphasized by Coelli, Rao and 

Battesse.   
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 When we estimate farm technical efficiency at the more disaggregated plot-level 

(separately for each toposequence-defined land type) and add more environmental control 

variables, our inferences regarding farmer technical inefficiency change significantly and 

more complex pattern emerges.  For example, our estimates using the sub-sample of plots 

planted with MVs fail to reject the null hypothesis that there is no technical inefficiency 

and the point estimates of the ratio of standard deviations λ (=σu/σv: an indicator of the 

relative contributions of u and v to the composite error term) are close to zero (Table 5, 

2nd column).  The average predicted value of technical efficiency is close to one.  This 

suggests that rice cultivation using modern rice varieties in eastern India is efficient and 

operating near the production frontier.  This finding sharply contrasts with those of earlier 

studies, such as Kalilajan (1982) and Sharif and Dar, that found significant inefficiency 

among rice farms planting MVs.  However, these earlier studies covered different years 

and regions of India, namely, from Tamil Nadu State in the late 1970s and in Bangladesh 

in the mid-1980s, respectively.  One possible interpretation for the different results of our 

study and the earlier studies is that significant technical inefficiency among farmers 

present in the early stage of MV introduction has been overcome as Indian farmers have 

learned and adopted standard practices for obtaining maximum yield with modern rice 

varieties over the course of the many years since MVs were introduced.   

 While our estimates suggest that there is not a statistically significant level of 

technical inefficiency on rice plots planted with MVs, the equivalent analysis (i.e., pooled 

plot-level analysis containing all land types) for rice plots planted with traditional 

varieties (TVs) indicates that there is significant technical inefficiency in TV rice 
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production (i.e., the null hypothesis of ‘no technical inefficiency’ is strongly rejected).  

The predicted technical efficiency scores range from 0.75 to 0.79, as shown in the third 

column of Table 5 and Table 6.  However, when plot-level estimates are carried out 

separately for plots of each land type, we obtain highly statistically significant technical 

inefficiency parameters in the estimates for medium land or lowlands plots, but not for 

upland and mid-upland plots.  For medium land and lowland plot estimates, the 

composite error term (Vi - Ui) is dominated by the technical inefficiency term (Ui).  The 

model that includes dummy variables indicating the availability of irrigation on the plot 

and village effects, point estimates of λ (=σu/σv) are 2.5 on lowland plots and 3.4 on 

medium land.  In the case of upland and mid-upland, the null hypothesis of no technical 

efficiency is still rejected in the model that does not include the additional control 

variables (the ‘minimum’ specification using regular production inputs only—land, seed, 

fertilizer, labor), however, once the irrigation and village dummy variables are introduced, 

the null hypothesis is no longer rejected.  Correspondingly, with the additional 

environmental controls, the point estimates of λ become very small (less than 0.1), 

although they are not estimated very precisely.  From these results, it is clear that model 

estimates are somewhat sensitive to changes in the set of control variables introducing 

additional environmental control variables.  In the case of upland and mid-upland rice 

plots planted with traditional varieties, adding indicators of irrigation availability or 

village level heterogeneity appears to have a major influence on the inferences that can be 

made regarding the existence of technical efficiency.  This finding is in line with that of 

Sherlund, Barrett and Adesina.  In contrast, however, in the case of traditional rice plots 
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on medium land and lowland, the introduction of additional environmental controls does 

not significantly influence inferences regarding technical efficiency.   

 A similar picture also emerges from review of the estimated mean technical 

efficiency scores shown in Table 6.  The mean technical efficiency scores are in the range 

between 0.7 and 0.8 on medium land and low land.  These results are consistent with 

findings of earlier research showing significant inefficiency in developing country 

agriculture.  On the other hand, however, the mean inefficiency scores (based on the 

model with irrigation and village heterogeneity controls) are close to one in the case of 

upland and mid-upland.   

 To summarize, we find that technical inefficiency is prevalent among the most 

fertile plots lying in the lower portions along toposequence (i.e., medium-land and 

lowland) while systematic technical inefficiency is not present on plots in the often 

degraded less favorable upper portions of the terrace toposequence (upland and mid-

upland) or on plots planted with modern rice varieties—which are predominantly (68 

percent) cultivated on medium land and lowland plots.  This suggests that the cultivation 

practices of rice farms in the study area in eastern India are more technically efficient on 

the least favorable (upland and mid-upland plots) and the most favorable (lands on lower 

terraces planted with MVs).  Rather surprisingly, technical efficiency is most evident on 

medium land and lowland plots (relatively favorable plots in terms of their moisture 

availability) planted with TVs (the varieties of rice traditionally cultivated in the study 

area so the crop farmers in the area should be most accustomed to).  A practical 

implication of this result is that there is the potential to improve the technical efficiency 
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of some farmers in their cultivation of relatively more favorable land parcels.  Our results 

also suggest the encouraging finding that adoption of MVs of rice is accompanied by an 

understanding of proper cultivation practice for these varieties. 

 A possible explanation of these results relates to the greater variability of soil 

characteristics found in upland and mid-upland plots.  The water holding capacity and 

soil nutrient composition of upland and mid-upland plots appear to be relatively more 

heterogeneous, while medium land and lowland plots exhibit less variability in their 

moisture holding capacity and soil nutrients.  The superior nutrient composition of plots 

on lower terraces of the toposequence is documented in Table 1, but the soil samples 

analyzed also established the greater heterogeneity of nutrient characteristics of upland 

and mid-upland plots.  In addition, the tendency for nutrients to be carried off plots on 

higher portions of the toposequence—particularly during heavy monsoon rains—and to 

be transferred to lower terraces depends upon idiosyncratic characteristics of the local 

topography, which is heterogeneous.  This run-off of nutrients also tends to increase the 

homogeneity of medium land and lowland plots.   

 As a result of the more heterogeneous and less favorable agricultural conditions 

encountered on higher terraces, the amount of production farms can garner from rice 

cultivated on upland and mid-upland plots is more uncertain and depends more on luck 

than lower terrace plots.  This is consistent with estimation results that the composite 

asymmetric error term is dominated by the symmetric random (non-systematic) error (i.e., 

small λ) in our estimates carried for medium land and lowland plots.  Along the lower 

portions of toposequence, water-holding capacity and nutrient characteristics of the soil is 



 19 

relatively more homogeneous (and stable over time), so farm cultivation practices exert 

relatively more influence over the amount of rice harvested at season’s end.  As a 

consequence, variation in farm management skills rather than random shocks have a 

larger impact on the amount of production (i.e., larger λ).   

 Our SFPF estimation results for plots upon which MVs were cultivated further 

suggest that cultivation practices for MV of rice tend to be more uniform across surveyed 

farms.  As shown on Table 2, on average across surveyed farms reported cultivation of 

MVs of rice, yields are higher and input levels less variant across farms than levels on 

TV rice plots.  This could result from technical extension regarding crop management for 

MV rice, which leads farms to adopt common techniques in cultivating MV rice plots, 

although our data do not include information on this aspect.   

 This finding contradicts established understanding from the existing literature, 

which finds that technical inefficiency is widespread among farms in developing 

agriculture.  Our findings based on disaggregated analyses at the plot-level suggest that 

the poor rice farmers in eastern India display differing levels of technical inefficiency 

depending upon the particular characteristics of their farm plots.  Controlling for low-

scale differences in plot fertility and moisture holding capacity and other local 

environmental characteristics causes farms to appear to be considerably more technically 

efficient than they appear based on aggregated SFPF estimates that fail to take explicit 

account of production effects of microtopography, irrigation availability, and village level 

characteristics.   
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Conclusions: policy implications and additional considerations 

Existing studies applying SFPF estimation to examine technical efficiency of farmers in 

developing agricultural regions have found widespread evidence of farm inefficiency.  In 

contrast, our findings that examine technical efficiency at the disaggregated plot-level 

suggest that the poor rice farming households in eastern India display varying levels of 

technical efficiency depending upon the particular characteristics of the plot being 

cultivated.  Rather than being uniformly inefficient in farming, farms appear to be 

efficient in the cultivation of some plots and inefficient in others.  To understand why this 

is the case, it is vital that one understands the local environment and distinct cultivation 

practices (and to a lesser extent, technology) applied in rice cultivation on plots of 

different land types.  Overall, our results suggest farms are considerably more technically 

efficient than they may first appear.  Farm wide analysis appear to incorrectly attribute 

differences in output levels to farm mismanagement when such differences are, in fact, 

due to small scale variations in soil quality and other environmental characteristics 

observable only at the plot level.   

 A number of policy implications can be drawn from this research’s findings.  The 

fact that farm cultivation of rice on poorer quality land (i.e., upland and mid-upland plots) 

is known to be relatively unproductive but did not display technical inefficiency suggests 

that investments on research and development of new crops and technologies to enhance 

production possibilities for less favorable lands could yield substantial benefits to farms 

in eastern India.  The finding that MV rice cultivation also fails to display systematic 

technical inefficiency, combined with survey results that show the higher yields and 
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lower average input levels on MV rice plots, suggests that the introduction and adoption 

of MV of rice in the study area has been successful although the MV adoption level 

remains quite low.  Accordingly, further efforts to expand use of MV of rice seem a 

useful avenue for enhancing farm efficiency and productivity in rice cultivation.  

 Although farms were found to be technically efficient in their rice cultivation on 

upper-terrace plots, there appears to be significant technical inefficiency on the lower 

portions of the land toposequence (i.e., on medium- and lowland plots).  This suggests 

strong potential for short-term gains from efforts aimed at improving technical efficiency 

in cultivation of TVs of rice on medium- and low-land situations.  Development and 

diffusion of sound crop management practices for rainfed traditional rice varieties 

through agricultural research adapted to local circumstances and farmer education 

focusing on these land types appear promising avenues for improving farm productivity 

and food security.  Lastly, the distinct cultivation practices for rice on parcels of different 

land types and the disparate production outcomes—and technical efficiency displayed—

in rice cultivation across plots differentiated by land type suggests that efforts to 

introduce new crops into the study area should take into consideration the fact that farms 

have developed complex patterns of rice cultivation across land types.   
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Table 1. Composition of nutrients across toposequence-defined land types 

 
Land type Number 

of samples 

Org. C 

(%) 

Ave. P 

(kg/ha) 

Ave. K 

(kg/ha) 

Total 

N (%) 

Upland 3 0.38 12 84 0.03 

Mid-upland 6 0.53 18 82 0.05 

Medium land 6 0.56 21 267 0.05 

Lowland  21 0.77 24 185 0.07 

Notes: C-Carbon, P-Potassium, K-Phosphorous, and N-Nitrogen. 

Source: Soil chemical analysis conducted at Indian Statistical Institute, Kolkata, India. 

 

 

Table 2. Summary statistics for variables used in SFPF estimates  
 

Sample/Sub-Sample (sample size) 

                  Variable 

Sample 

Mean 

Coefficient 

of Variation 

Minimum 

Value 

Maximum 

Value 

     
All Kharif season rice plots planted with modern varieties (N=169) 

 yield (kg./ha.) 1,044.3 6.179 45.0 8,420.0 

 land (ha.)        0.892 0.005   0.05      12.16 

 seed (kg.)      42.50 0.251   2.00    550.00 

 fertilizer (100 kg.)        2.803 0.017   0.000      19.800 

 labor (person-days)      65.78 0.389   6.00    368.00 

 upland land-type plot (0/1)        0.036     --   0        1 

 mid-upland plot (0/1)        0.284     --   0        1 

 medium land plot (0/1)        0.254     --   0        1 

 lowland plot (0/1)        0.426     --   0        1 

 irrigation available (0/1)        0.090     --   0        1 

      
All Kharif season rice plots planted with traditional varieties (N=920) 

 yield (kg./ha.) 907.6 1.174 30.0 12,592.0 

 land (ha.)     0.940 1.055   0.025        10.47 

 seed (kg.)   48.619 1.131   1.00      525.00 

 fertilizer (kg.)    2.260 1.343   0.000        36.000 

 labor (person-days)  74.484 0.986   3.00      823.00 

 upland land-type plot (0/1)    0.114     --   0          1 

 mid-upland plot (0/1)    0.485     --   0          1 

 medium land plot (0/1)    0.140     --   0          1 

 lowland plot (0/1)    0.260     --   0          1 

 irrigation available (0/1)    0.090     --   0          1 

(Table continues…)  
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Table 2. Summary statistics for variables used in SFPF estimates (concluded) 

 
Sample/Sub-Sample (sample size) 

                  Variable 

Sample 

Mean 

Coefficient 

of Variation 

Minimum 

Value 

Maximum 

Value 

      Kharif season traditional variety rice plots on upland (N=105) 

 yield (kg./ha.) 471.3 4.489 40.0 1,645.0 

 land (ha.)     0.726 0.007   0.030        4.000 

 seed (kg.)   36.34 0.346   2.00    140.00 

 fertilizer (kg.)     0.966 0.009   0.000        8.680 

 labor (person-days)   47.38 0.451   3.00    267.00 

 irrigation available (0/1)     0.048     --   0        1 

      
Kharif season traditional variety rice plots on middle upland (N=446) 

 yield (kg./ha.) 848.0 1.901 30.0 7,350.0 

 land (ha.)     0.972 0.002   0.025        9.000 

 seed (kg.)   50.128 0.112   1.00    420.00 

 fertilizer (kg.)     2.350 0.005   0.000      36.000 

 labor (person-days)   77.910 0.175   3.50    823.00 

 irrigation available (0/1)     0.100     --   0        1 

      
Kharif season traditional variety rice plots on medium land (N=129) 

 yield (kg./ha.) 1,019.5 7.903 90.0 7,140.0 

 land (ha.)        0.928 0.007   0.060        6.000 

 seed (kg.)      46.257 0.359   2.75    525.00 

 fertilizer (kg.)        2.473 0.019   0.000      27.000 

 labor (person-days)      77.054 0.597   6.00    430.00 

 irrigation available (0/1)        0.147     --   0        1 

      
Kharif season traditional variety rice plots on medium land (N=239) 

 yield (kg./ha.) 1,148.9 1.263 35.0 12,592.0 

 land (ha.)        0.977 1.162   0.030        10.470 

 seed (kg.)      52.335 1.138   2.00      490.00 

 fertilizer (kg.)        2.546 1.223   0.000        20.000 

 labor (person-days)      78.192 0.961   3.50      498.00 

 irrigation available (0/1)        0.059     --   0          1 
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Table 3. Input elasticities and standard deviation from SFPF estimates 

   (based on the MINIMUM model with production inputs only) 
Alternative plot/land-type disaggregation levels 

Plots pooled by land-type:  Plot specific estimates: 

 

Farm level 

Modern 

Varieties 

(MV) only 

Traditional 

Varieties 

(TV) only 

upland  

(TV only) 

mid-upland 

(TV only) 

medium 

land  

(TV only) 

lowland  

(TV only) 

Production input: 

Land 0.7088 

(0.134) 

0.4728 

(0.211) 

0.5787 

(0.183) 

0.2195 

(0.260) 

0.5782 

(0.170) 

0.8690 

(0.046) 

0.6363 

(0.156) 

Fertilizer 0.0436 

(0.025) 

0.0646 

(0.054) 

0.0565 

(0.032) 

0.0749 

(0.174) 

0.0648 

(0.046) 

0.0069 

(0.012) 

0.0160 

(0.034) 

Labor -0.0521 

(0.042) 

0.0155 

(0.114) 

0.0702 

(0.100) 

0.1182 

(0.182) 

0.0379 

(0.075) 

-0.0092 

(0.042) 

0.0889 

(0.094) 

Seed 0.2646 

(0.095) 

0.3703 

(0.065) 

0.2580 

(0.105) 

0.4075 

(0.228) 

0.2726 

(0.178) 

0.0841 

(0.035) 

0.2320 

(0.143) 

 

 

 

Table 4. Input elasticities and standard deviation from SFPF estimates  
  (based on the FULL model with irrigation and village controls) 

Alternative plot/land-type disaggregation levels 

Plots pooled by land-type:  Plot specific estimates: 

 

Farm level 

Modern 

Varieties 

(MV) only 

Traditional 

Varieties 

(TV) only 

upland  

(TV only) 

mid-upland 

(TV only) 

medium 

land  

(TV only) 

lowland  

(TV only) 

Production inputs: 

Land 0.617 

(0.128) 

0.4374 

(0.238) 

0.5219 

(0.189) 

0.3067 

(0.256) 

0.4758 

(0.147) 

0.8556 

(0.041) 

0.5785 

(0.158) 

Fertilizer 0.0354 

(0.026) 

0.0301 

(0.036) 

0.0511 

(0.037) 

0.0947 

(0.117) 

0.0630 

(0.0447) 

0.0083 

(0.011) 

0.004 

(0.032) 

Labor -0.0358 

(0.042) 

-0.0524 

(0.115) 

0.0482 

(0.088) 

0.1287 

(0.157) 

0.0349 

(0.0823) 

0.00259 

(0.043) 

0.0743 

(0.102) 

Seed 0.3367 

(0.113) 

0.4771 

(0.120) 

0.3280 

(0.127) 

0.3594 

(0.161) 

0.3766 

(0.170) 

0.0631 

(0.027) 

0.3278 

(0.112) 
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Table 5. Estimates of farm technical efficiency in rice cultivation: Model variants 

Mixture Wald chi-square test statistics (h0: σu=0) for the presence of technical 

inefficiency (p-value in parentheses) and estimated λ = σu /σv  
Alternative plot/land-type disaggregation levels 

Plots pooled by land-type:  Plot specific estimates: 

 

Farm level 

Modern 

Varieties 

(MV) only 

Traditional 

Varieties 

(TV) only 

upland  

(TV only) 

mid-upland 

(TV only) 

medium 

land  

(TV only) 

lowland  

(TV only) 

sample size 469 169 920 105 446 129 239 

functional 

form 
Translog Translog Translog Translog Translog 

Cobb-

Douglas 
Translog 

alternative specifications for the production frontier: 

Minimum  

(land, seed, 

fertilizer, 

labor only) 

21.54 

(0.00) 

λ=1.844 
 

0.00 

(1.00) 

λ=0.0158 
 

-13.58 

(0.00) 

λ=1.402 
 

4.93 

(0.013) 

λ=2.383 
 

4.06 

(0.022) 

λ=1.149 
 

3.68 

(0.027) 

λ=1.373 
 

17.76 

(0.00) 

λ=2.3601 
 

+ land type 

dummy (or 

land type 

shares)  

16.08 

(0.00) 

λ=1.591 
 

0.00 

(1.00) 

λ=0.0107 
 

18.79 

(0.00) 

λ=1.458 
 

----- ----- ----- ----- 

+landtype 

+irrigation/ 

& village 

dummy  

----- 

0.00 

(1.00) 

λ=0.0238 
 

9.14 

(0.001) 

λ=1.2716 
 

----- ----- ----- ----- 

+irrigation/ 

& village 

dummy  

8.94 

(0.001) 

λ=1.420 
 

----- ----- 

0.00 

(1.00) 

λ=0.0401 
 

0.00 

(1.00) 

λ=0.0150 
 

12.79 

(0.00) 

λ=3.391 
 

10.59 

(0.001) 

λ=2.501 
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Table 6. Mean predicted technical efficiency scores  

(observation range in square bracket)  
Alternative plot/land-type disaggregation levels 

Plots pooled by land-type:  Plot specific estimates: 

 

Farm level 

Modern 

Varieties 

(MV) only 

Traditional 

Varieties 

(TV) only 

upland  

(TV only) 

mid-upland 

(TV only) 

medium 

land  

(TV only) 

lowland  

(TV only) 

alternative specifications: 

Minimum  

(land, seed, 

fertilizer, 

labor only) 

0.7544 

 [0.2368 

−0.9506] 

0.9955 

 [0. 9954 

−0. 9956] 

0.7531 

[0.3332 -

0.9421] 

0.7015 

 [0.2862  

−0.9293] 

0.8010 

 [0.4293 

−0.9542] 

0.8255 

 [0.4654 

−0.9580] 

0.7196 

 [0.2265  

−0.9561] 

+ land type 

dummy (or 

land type 

shares)  

0.7844 

[0.3271 

-0.9510] 
----- ----- ----- ----- ----- ----- 

+landtype 

+irrigation 

& village 

dummy  

----- 

0.9940 

 [0.9938  

−0.9944] 

0.7877 

[0.4084 -

0.9576] 
----- ----- ----- ----- 

+irrigation & 

village 

dummy  

0.8029 

 [0.3969 

−0.9544] 

----- ----- 

0.9898 

 [0.9894  

−0.9903 ] 

0.9965 

 [0.9964  

−0.9966] 

0.7860 

 [0.2981 

−0.9596] 

0.7240 

 [0.2737  

−0.9520] 

 


